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ABSTRACT 

Accurate reliability assessment requires accurate output distribution.  To 
obtain correct output distribution, a very large number of output physical test data 
is required, which is prohibitively expensive.  Regarding this, simulation-based 
methods have been developed under the assumption that: (1) accurate input 
distribution models obtained from large number of input test data; and (2) accurate 
simulation model (including surrogate model if utilized) that correctly represents 
physical phenomena.  However, in real application, only limited numbers of input 
test data are available.  Thus, input distribution models are uncertain.  In addition, 
the simulation model could be biased due to assumptions and idealizations.  
Furthermore, only a limited number of physical output test data is available.  As a 
result, a target output distribution to which simulation model can be validated is 
uncertain and the corresponding reliability is also uncertain.  This paper proposes 
a confidence-based reliability assessment that combines uncertainty due to 
insufficient input/output test data and biased simulation model.  To do that, a 
hierarchical Bayesian analysis is formulated to obtain uncertainty distribution of 
reliability.  After that, confidence-based reliability is selected at the user-specified 
target confidence level.  It has been numerically demonstrated that the proposed 
method can estimate reliability of a product that satisfies the user-specified target 
confidence level. 
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1. INTRODUCTION 
The U.S. Army is continually seeking ground 

systems that improve performance and reliability to 
reduce maintenance cost significantly.  It is 
desirable to be able to assess continual reliability of 
ground systems without requiring a large number 
of physical test data, which is very expensive.  
Hence, TARDEC conducts computational M&S to 
improve the understanding of the product 
performance to shape and inform program 
management and acquisition community for 
enabling rapid product development and reduced 
test and evaluation costs.  A challenge is that 
reliability assessment using only computational 
simulation model may not be accurate. 

To assess accurate reliability using the simulation 
model, it is assumed that (1) accurate input 
distribution models and (2) accurate simulation 
model (including surrogate model if utilized) is 
available.  Accurate input distribution models can 
be constructed only when very large numbers of 
data for input variables are available.  At the same 
time, the accuracy of simulation model can be 
verified only if a large number of physical test 
(output) data is available.  However, in real 
engineering applications, it is very expensive to 
obtain large numbers of either input or output data.  
Therefore, the two conditions for accurate 
reliability – accurate input distribution models and 
accurate simulation model – may not be satisfied.  
Only limited numbers of input and output data are 
provided in engineering applications. 

Thus, uncertainty arises in both input distribution 
models and simulation models.  To consider those 
uncertainties, a novel reliability estimation method 
is developed in this paper.  The paper consists of 
following sections.  In Section 2, it is explained in 
detail why uncertainty due to limited number of 
data propagates to the uncertainty in reliability.  In 
Section 3, the uncertainty in input distribution 
model is considered using Bayesian method.  
Section 4 describes how to capture model bias and 
uncertainty due to insufficient output data.  In 
addition, both uncertainties are combined in 

Section 4.  The developed uncertainty 
quantification method is verified thoroughly using 
an engineering example in Section 5.  Finally, the 
findings of this study are summarized in Section 6. 

 
2. RELIABILITY UNDER UNCERTAINTIES 

Reliability of a performance measure is defined 
by a multidimensional integration as 

 
 
𝑅𝑅𝑅𝑅(𝐺𝐺, 𝛇𝛇,𝛙𝛙) = � 𝐼𝐼[𝐺𝐺(𝐱𝐱)] 𝑓𝑓𝐗𝐗(𝐱𝐱; 𝛇𝛇,𝛙𝛙) 𝑑𝑑𝐱𝐱

ℝ𝑁𝑁
 (1) 

 
where 𝐱𝐱  is a realization of 𝑁𝑁 -dimensional input 
random variable 𝐗𝐗 ; 𝐺𝐺(𝐱𝐱)  is the performance 
measure, which is feasible if 𝐺𝐺(𝐱𝐱) ≤ 0; 𝑓𝑓𝐗𝐗(𝐱𝐱; 𝛇𝛇,𝛙𝛙) 
is joint probability density function (PDF) of 𝐗𝐗; 𝛇𝛇 
is input distribution type; 𝛙𝛙  is input distribution 
parameter; and 𝐼𝐼[𝐺𝐺(𝐱𝐱)]  is an indicator function 
defined as 
 

 𝐼𝐼[𝐺𝐺(𝐱𝐱)]  ≡ �  1,   for  𝐺𝐺(𝐱𝐱) ≤ 0
  0,   otherwise.     (2) 

 
In Eq. (1), it is shown that the inputs of reliability 

are performance measure 𝐺𝐺(𝐱𝐱), input distribution 
type 𝛇𝛇, and input distribution parameter 𝛙𝛙.  The 
accuracy of reliability estimation relies entirely on 
the accuracy of 𝐺𝐺(𝐱𝐱), 𝛇𝛇, and 𝛙𝛙.  If we do not have 
accurate 𝐺𝐺(𝐱𝐱), 𝛇𝛇, and 𝛙𝛙, the reliability estimation 
could not be trustworthy.  Moreover, if there are 
multiple 𝐺𝐺(𝐱𝐱) , 𝛇𝛇 , or 𝛙𝛙 , multiple reliability 
estimations are required. 

If limited number of input data is used, it is not 
possible to obtain accurate input distribution type 𝛇𝛇 
and input distribution parameter 𝛙𝛙.  Furthermore, 
the performance measure 𝐺𝐺(𝐱𝐱) is evaluated using a 
computer simulation, which may not perfectly 
represent real-physics.  That is, the simulation 
model could be biased since it is an approximation 
of the true performance measure with assumptions 
and idealizations.  To correct the bias, the 
simulation model can be validated against (output) 
testing.  However, the output testing is usually more 
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expensive than the input testing.  Here, the 
insufficiency of the output data could be 
significant.  Uncertainty arises in the simulation 
model 𝐺𝐺(𝐱𝐱) due to the bias and the limited number 
of output test data. 
 
3. INPUT DISTRIBUTION MODEL 
UNCERTAINTY 

The input distribution model, which is defined by 
input distribution type 𝛇𝛇  and input distribution 
parameter 𝛙𝛙, represents variability of input random 
variables.  To consider the uncertainty in input 
distribution model induced by the limited number 
of input data, Bayesian approach has been applied 
to the reliability analysis [1].  The Bayesian 
approach selects multiple candidate input 
distribution models – multiple sets of 𝛇𝛇  and 𝛙𝛙 – 
based on the (limited number of) input data.  Each 
candidate input distribution model produces a 
reliability realization.  Once reliability of all 
candidate distributions are evaluated, distribution 
of reliability can be obtained. 

 
3.1  Parameter uncertainty 
The input distribution parameter 𝛙𝛙𝑖𝑖 for a random 

variable 𝑋𝑋𝑖𝑖  consists of input mean 𝜇𝜇𝑖𝑖  and input 
variance 𝜎𝜎𝑖𝑖2.  If  𝐱𝐱𝑖𝑖𝑒𝑒, input data for 𝑋𝑋𝑖𝑖, is given, the 
probability of 𝜎𝜎𝑖𝑖2  follows inverse chi-square 
distribution as [1] 

 
 𝜎𝜎𝑖𝑖2|𝐱𝐱𝑖𝑖𝑒𝑒 ~ Inv − 𝜒𝜒2(𝑁𝑁𝑁𝑁 − 1, 𝑠𝑠𝑖𝑖2) (3) 
 

where 𝑁𝑁𝑁𝑁  is the number of data and 𝑠𝑠𝑖𝑖2  is the 
sample variance.  

The input mean 𝜇𝜇𝑖𝑖  follows normal distribution 
based on 𝐱𝐱𝑖𝑖𝑒𝑒 as [1] 

 
 𝜇𝜇𝑖𝑖|𝜎𝜎𝑖𝑖2, 𝐱𝐱𝑖𝑖𝑒𝑒 ~ N(�̅�𝑥𝑖𝑖,𝜎𝜎𝑖𝑖2 𝑁𝑁𝑁𝑁⁄ ) (4) 

 
where �̅�𝑥𝑖𝑖 is mean of data subset 𝐱𝐱𝑖𝑖𝑒𝑒. 

Realizations of 𝛙𝛙𝑖𝑖  from Eqs. (3) and (4) create 
candidates of input distribution parameter 𝛙𝛙 =

{𝛙𝛙𝑖𝑖|𝑖𝑖 = 1, … ,𝑁𝑁}  where N is number of random 
variables with (limited number of) data. 
 

3.2  Distribution type uncertainty 
Once the candidates of input distribution 

parameter are obtained, the probability of input 
distribution type 𝛇𝛇 can be obtained as [1] 

 
 

𝑃𝑃(𝛇𝛇|𝛙𝛙,𝐱𝐱𝑒𝑒) =
𝐿𝐿(𝐱𝐱𝑒𝑒; 𝛇𝛇,𝛙𝛙)

∑ 𝐿𝐿(𝐱𝐱𝑒𝑒; 𝛇𝛇,𝛙𝛙)𝐙𝐙
 (5) 

 
where 𝐿𝐿(𝐱𝐱𝑒𝑒; 𝛇𝛇,𝛙𝛙) is the likelihood function.  From 
Eq. (5), candidates of input distribution type is 
obtained.  

Once the candidates of input distribution model is 
obtained, the output distribution of each candidate 
can be generated using the performance measure 
𝐺𝐺(𝐱𝐱).  If 𝐺𝐺(𝐱𝐱) is a biased simulation model and 
there is only limited number of output test data, the 
uncertainty induced by them should be considered.  
This subject will be explained in the following 
section. 
 
4. CONFIDENCE-BASED RELIABILITY 
ESTIMATION 

Using candidates of input distribution models, 
possible biased simulation output PDFs can be 
obtained.  Still, the possible simulation output 
PDFs and reliabilities from them are not accurate 
due to the model bias.   

Characterizing the model bias is difficult task 
because it means obtaining true output PDF using a 
large number of physical output tests.  Since only a 
limited number of output test data is available, there 
exists the uncertainty induced by insufficient output 
test data.  Accordingly, a new reliability assessment 
method should consider the uncertainty induced by 
insufficient output test data as well as uncertainty 
of input distribution model.  As a consequence, 
reliability cannot be uniquely determined under 
these uncertainties.  Thus, the proposed method 
evaluates a confidence level; and the developed 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

UNCLASSIFIED: Distribution Statement A. Approved for public release. 
 
 

Page 4 of 10 

method is referred to as a confidence-based 
reliability assessment.  

Section 4.1 explains the uncertainty due to 
limited number of output test data, which results in 
uncertain target output PDF and reliability.  In 
Section 4.2, the uncertainty due to limited number 
of output test data is combined with uncertain input 
distribution model quantified in Section 3 and the 
biased simulation model.  By combining all 
uncertainties, uncertainty of reliability can be 
obtained and thus the confidence level of reliability 
can be evaluated.  Section 4.3 describes how to 
select the confidence-based reliability and target 
output PDF, which satisfy the user-specified target 
confidence level.  

 
4.1 Uncertainty due to limited number of 

physical output test data 
In the presence of the uncertainty due to 

insufficient output test data, a predicted output PDF 
becomes uncertain.  As a result, there could be 
various possible predicted output PDFs as shown in 
Figure 1.  Accordingly, an uncertainty also exists in 
the predicted reliability, which is calculated based 
on the predicted output PDF.  However, a 
confidence-based target output PDF has to be 
selected to validate simulation output PDF against 
it.   

   
Figure 1: Uncertainty in target output PDF and 

reliability due to insufficient output test data 
  
In this study, to model output PDF, adaptive 

kernel density estimation (AKDE) as a non-
parametric method is used because the output 
distribution type may not belong to any standard 
parametric distribution.  In AKDE, the bandwidth 
(h0) is the only unknown parameter; hence, the 
uncertainty of output PDF is reflected by a posterior 

distribution of the bandwidth.  Using the Bayesian 
analysis, the posterior distribution of the bandwidth 
𝑃𝑃(ℎ0|𝐲𝐲𝑒𝑒)  given insufficient output test data, 𝐲𝐲𝑒𝑒 , 
can be obtained by the product of the likelihood 
function and prior distribution [2].  The information 
of biased simulation output PDF, which is 
generated using the candidates of input distribution 
model and biased simulation model in Section 3, is 
used to construct prior distribution.  Then, the CDF 
of the reliability, 𝐹𝐹𝑅𝑅𝑒𝑒(𝑅𝑅𝑅𝑅|𝐲𝐲𝑒𝑒), can be formulated as 
the following 

   
 𝐹𝐹𝑅𝑅𝑒𝑒(𝑅𝑅𝑅𝑅|𝐲𝐲𝑒𝑒)

= � � 𝑓𝑓(𝑅𝑅𝑅𝑅|ℎ0, 𝐲𝐲𝑒𝑒)
𝛺𝛺ℎ0

𝑃𝑃(ℎ0|𝐲𝐲𝑒𝑒)
𝑅𝑅𝑒𝑒

0
𝑑𝑑ℎ0𝑑𝑑𝑅𝑅𝑅𝑅 (6) 

 
where 𝑓𝑓(𝑅𝑅𝑅𝑅|ℎ0, 𝐲𝐲𝑒𝑒) = 𝛿𝛿[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅(ℎ0)]  is the 
conditional PDF of reliability given bandwidth h0, 
which is the Dirac delta measure.  Meanwhile, the 
posterior distribution of bandwidth 𝑃𝑃(ℎ0|𝐲𝐲𝑒𝑒)  in 
Eq. (6) cannot be analytically obtained so that the 
realization of the h0 needs to be generated using the 
Markov Chain Monte Carlo (MCMC) sampler in 
accordance with 𝑃𝑃(ℎ0|𝐲𝐲𝑒𝑒) .  Consequently, 
integration in Eq. (6) is numerically evaluated using 
MCS as 

 
 𝐹𝐹𝑅𝑅𝑒𝑒 (𝑅𝑅𝑅𝑅|𝐲𝐲𝑒𝑒) =

≅
1
𝑀𝑀
� ��𝑓𝑓�𝑅𝑅𝑅𝑅|ℎ0

(𝑖𝑖), 𝐲𝐲𝑒𝑒��
𝑀𝑀

𝑖𝑖=1

𝑅𝑅𝑒𝑒

0
𝑑𝑑𝑅𝑅𝑅𝑅

=
1
𝑀𝑀
� �𝛿𝛿 �𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅�ℎ0

(𝑖𝑖)��
𝑀𝑀

𝑖𝑖=1

𝑅𝑅𝑒𝑒

0
𝑑𝑑𝑅𝑅𝑅𝑅

=
1
𝑀𝑀
�𝐼𝐼[0,𝑅𝑅𝑒𝑒] �𝑅𝑅𝑅𝑅�ℎ0

(𝑖𝑖)��
𝑀𝑀

𝑖𝑖=1

 

(7) 

 
where M is the number of MCS samples and ℎ0

(𝑖𝑖) is 
the ith realization of h0 by MCMC sampling.  It is 
noted that the obtained CDF of reliability 
represents the uncertainty of reliability. 
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4.2 Combine uncertainty due to limited 
number of output test data with uncertainty 
of input distribution models  

In the presence of uncertain input distribution 
models, many possible biased simulation output 
PDFs exist as explained in Section 3.  Thus, single 
level Bayesian model that is proposed in Section 
4.1 is not appropriate.  Hence, a hierarchical 
Bayesian model is proposed to combine 
uncertainties induced by limited input/output test 
data and biased simulation model as 

 
 𝑃𝑃(ℎ0, 𝛇𝛇,𝛙𝛙|𝐲𝐲𝑒𝑒 ,𝐱𝐱𝑒𝑒)
∝ 𝐿𝐿(𝐲𝐲𝑒𝑒|ℎ0, 𝛇𝛇,𝛙𝛙, 𝐱𝐱𝑒𝑒)𝑃𝑃(ℎ0, 𝛇𝛇,𝛙𝛙|𝐱𝐱𝑒𝑒) 

where 

𝑃𝑃(ℎ0, 𝛇𝛇,𝛙𝛙|𝐱𝐱𝑒𝑒)
∝ 𝑃𝑃(ℎ0|𝛇𝛇,𝛙𝛙,𝐱𝐱𝑒𝑒)𝑃𝑃(𝛇𝛇,𝛙𝛙|𝐱𝐱𝑒𝑒) 

(8) 

 
Here, 𝐿𝐿(𝐲𝐲𝑒𝑒|ℎ0, 𝛇𝛇,𝛙𝛙, 𝐱𝐱𝑒𝑒)  is likelihood function 
obtained using AKDE; 𝑃𝑃(ℎ0|𝛇𝛇,𝛙𝛙, 𝐱𝐱𝑒𝑒) is the prior 
distribution of bandwidth given input distribution 
model; and 𝑃𝑃(𝛇𝛇,𝛙𝛙|𝐱𝐱𝑒𝑒)  is hyper prior for input 
distribution model, which is product of Eqs. (3), 
(4), and (5). 

After applying hierarchical Bayesian model, 
posterior distribution of bandwidth can be obtained 
in Eq. (8).  It is worth noting that the posterior 
distribution of bandwidth is different from one 
obtained in Section 4.1 because it additionally 
considers uncertainty of input distribution models.  
Accordingly, many possible candidates of output 
PDFs can be obtained.  Then, the corresponding 
reliability can be evaluated for each output PDF, 
which represents uncertain reliabilities.  Many 
possible reliabilities can construct the CDF of 
reliability.  To provide confidence information, 
complementary CDF (CCDF), which is 1−CDF, 
may be more useful. 

 
4.3 Confidence-based reliability and 

target output distribution 
The proposed method suggests to use a 

conservatively selected reliability value based on 

the CCDF of reliability.  In the CCDF, higher 
percentile indicates more conservative estimation 
of reliability.  This is why the percentile is referred 
to as the confidence level as mentioned earlier.  The 
user can select a target confidence level CLtarget.  
The reliability at the target confidence level is the 
confidence-based reliability as shown in Figure 2.  
The corresponding output PDF that produces 
confidence-based reliability is the confidence-
based target output PDF.  Once the confidence-
based target output PDF is selected, the biased 
simulation model output PDF can be validated 
against it.  In this paper, the validation process is 
left as future research. 

 

 
Figure 2: Confidence-based reliability and CCDF 

 
 

5. NUMERICAL EXAMPLE: 11-D VEHICLE 
SIDE IMPACT PROBLEM 

The proposed confidence-based reliability 
assessment is demonstrated using 11-D vehicle side 
impact problem [3,4].  Table 1 shows true input 
distributions of 11 input random variables.  To 
represent a practical situation, it is assumed that we 
know true input distributions only for 𝑋𝑋1~𝑋𝑋7, 
which are thicknesses of steel plates.  On the other 
hand, only limited numbers of data are available for 
material properties (𝑋𝑋8~𝑋𝑋9) and crash properties 
(𝑋𝑋10~𝑋𝑋11).  For these four input variables, ten test 
data is randomly drawn from true input 
distributions like carrying out testing.  Out of ten 
constraints in the original problem [3,4], only three 
active constraints at the current design are 
considered as:  
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Constraint 1: lower rib deflection – 31.5mm ≤ 0 
Constraint 2: pubic symphysis force – 3.98kN ≤ 0 
Constraint 3: velocity of front door at B-pillar  

− 15.55mm/ms ≤ 0 
 

Biased constraints 𝐺𝐺𝑖𝑖 (𝐗𝐗)  are formulated by 
subtracting bias 𝐵𝐵𝑖𝑖(𝐗𝐗)  from true output model 
𝐺𝐺𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝐗𝐗) as 𝐺𝐺𝑖𝑖(𝐗𝐗) = 𝐺𝐺𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝐗𝐗) − 𝐵𝐵𝑖𝑖(𝐗𝐗).  The true 
outputs (i.e., true physical output) are defined as 
 

 𝐺𝐺1𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝐗𝐗) = 14.86 + (−9.9𝑋𝑋2 
               −12.9𝑋𝑋1𝑋𝑋8 + 0.1107𝑋𝑋3𝑋𝑋10) 

𝐺𝐺2𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝐗𝐗) = 0.74 + (−0.5𝑋𝑋4 − 0.19𝑋𝑋2𝑋𝑋3 
            −0.0122𝑋𝑋4𝑋𝑋10 + 0.009325𝑋𝑋6𝑋𝑋10 
            +0.000191𝑋𝑋112 ) 
𝐺𝐺3𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝑿𝑿) = 1.5 + (−0.489𝑋𝑋3𝑋𝑋7 
               −0.843𝑋𝑋5𝑋𝑋6 + 0.0432𝑋𝑋9𝑋𝑋10 
               −0.0556𝑋𝑋9𝑋𝑋11 − 0.000786𝑋𝑋112 ) 

(9) 

 
and biases for three constraints (from the 
simulation model) are given by 
 

 𝐵𝐵1(𝑿𝑿) = 1.67𝑋𝑋12.3 + 2.6𝑋𝑋2
− 0.017𝑋𝑋8𝑋𝑋102  

𝐵𝐵2(𝑿𝑿) = 0.16𝑋𝑋42.4 

𝐵𝐵3(𝑿𝑿) = 0.79(2𝑋𝑋6 − 𝑋𝑋5)
− 0.00013𝑋𝑋102 𝑋𝑋11 

(10) 

 
Note that in demonstration of the proposed method, 
we do not know the true outputs in Eq. (9) and 
biases in Eq. (10).  We only use the biased 
constraints 𝐺𝐺𝑖𝑖(𝐗𝐗) = 𝐺𝐺𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝐗𝐗)− 𝐵𝐵𝑖𝑖(𝐗𝐗)  as the 
simulation model.   

In many engineering applications, Eq. (1) cannot 
be analytically evaluated because output 
performance measure 𝐺𝐺(𝐗𝐗)  is usually nonlinear.  
Thus, in this study, a sampling-based reliability 
analysis is used, which calculates reliability using 
MCS.  Then, Eq. (1) can be approximated by  
 

 
𝑅𝑅𝑅𝑅(𝐺𝐺, 𝛇𝛇,𝛙𝛙) ≅

1
𝑛𝑛𝑀𝑀𝑛𝑛𝑛𝑛

� 𝐼𝐼�𝐺𝐺�𝐱𝐱(𝒌𝒌)�� 
𝑛𝑛𝑀𝑀𝑛𝑛𝑛𝑛

𝑘𝑘=1

, (11) 

 
where 𝐱𝐱(𝒌𝒌)  is kth realization of 𝐗𝐗 .  However, for 
large-scale computer-aided engineering (CAE) 
simulation models, direct use of MCS requires a 
very large number of simulations.  To resolve issue, 
the dynamic Kriging (DKG) method [5,6], which is 
one of the most accurate surrogate modeling 
methods [7,8], is used. 

  
Table 1: Input variable information 

 
To describe the error level of biased simulation 

model, the output mean of biased simulation model 
have been compared with those obtained using true 
model in Table 2.  It can be seen that the bias is 
around 10% of true model, which indicates that the 
simulation model is reasonable. 

 
 

Description 
True input distributions 

Remark Type Mea
n STD 

X1 
B-pillar 

inner 

Normal 

0.5 0.015 

True 
input 

distributi
ons are 
known 

X2 
B-pillar 

reinforce 1.3 0.039 

X3 
Floor side 

inner 0.5 0.015 

X4 
Cross 

member 1.3 0.039 

X5 
Door 
beam 1.1 0.033 

X6 
Door belt 

line 1.5 0.045 

X7 Roof rail 0.5 0.015 

X8 
Mat.  

B-pillar 
inner Log 

Normal 

0.34
5 

0.024
2 Only 

limited 
number 
of data 

are 
available 

X9 
Mat. Floor 
side inner 

0.19
2 

0.013
4 

X10 
Barrier 
height Normal 

0 10 

X11 
Barrier 
hitting 0 10 
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Table 2: Accuracy of biased simulation model 
 
 

Output mean 
G1 G7 G9 

Biased simulation 
model (𝑎𝑎) 28.70 3.64 13.82 

True model (𝑏𝑏) 30.83 3.94 15.32 

Error �𝑏𝑏−𝑎𝑎
𝑏𝑏

× 100� 10.16% 7.63% 9.80% 

 
 

5.1 Confidence level and confidence-
based reliability 

The proposed confidence-based reliability has 
been applied to the 11-D side impact problem.  
Figure 3 depicts the ten input data for each of four 
variables, which are randomly drawn from true 
input distributions.  Figure 4 describes how five 
output test data are distributed, which are randomly 
drawn from true output distributions.   

For simulation, the DKG surrogate models have 
been generated for the biased constraints 𝐺𝐺𝑖𝑖(𝐗𝐗), 
which are used for analysis at the design of 
experiment (DOE) points.  The DKG models 
rightly cover the candidate input distributions (local 
window) instead of the entire design domain 
(global window) to reduce number of required 
DOE points for accurate results.  The 
Transformation/Gibbs sampling method (TGS) is 
used to provide uniform initial 200 DOE samples 
in the local window.  Then, 10 additional DOE 
points are sequentially added to reduce the variance 
of the Kriging results in between DOE sample 
points until acceptable accuracy has been achieved.  
In total, responses of 410 DOEs and 1.92 hours 
with Intel i7-2600 CPU and 16GB of RAM have 
been used for creation of the DKG models. 

The CCDF of reliability is obtained as shown in 
Figure 5.  At the target confidence level of 90%, the 
confidence-based reliability is evaluated as 62.78% 
(for G1), 62.92% (for G2) and 58.48% (for G3).  In 
addition, for the purpose of comparison, two other 
methods have been carried out: the simulation-
based method and the method that best fits output  

 
 

 
 

Figure 3: Ten input data drawn from true input 
distributions 

 

 
      (a)  G1   (b)  G2 

 

 
(c)  G3 

Figure 4: Five output data drawn from true output 
distribution 

 
test results.  The simulation-based method uses 
biased simulation model and best-fit input 
distribution models that are approximated by 
maximum likelihood estimation using the ten input 
test data for each variable.  The output best-fit 
method utilizes five output test data to estimate the 
reliability by directly applying AKDE to the data.  
Hence, the biased simulation model is not used for 
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the output best-fit method.  Table 3 lists 
confidence-based reliability, output best-fit 
reliability and simulation-based reliability.  It can 
be seen that both the simulation-based reliability 
and output best-fit reliability overestimate the true 
reliability.  On the other hand, confidence-based 
reliability is conservative compared to the true 
reliability.  In particular, both simulation-based 
reliability and output best-fit reliability for G1 and 
G2 are very close to 100% which will mislead to 
wrong decision on product design.  However, the 
developed method can prevent the wrong decision 
by providing safe estimation of reliability (i.e., 
conservative reliability). 
 

 
(a)  G1             (b)  G2 

 

 
(c)  G3 

Figure 5: Confidence level and confidence-based 
reliability 

 
Table 3: Summary of reliability estimation 

 

Reliability 
Constraint 

G1 G2 G3 
Confidence-based 

(using DKG) 62.78% 62.92% 58.48% 

Output Best-fit 92.53% 100.00% 80.16% 
Simulation-based 

(using DKG) 98.26% 99.82% 99.89% 

True 63.23% 69.08% 67.36% 

 
To check accuracy of reliabilities obtained using 

the DKG models, they are recalculated using the 
analytical functions of 𝐺𝐺𝑖𝑖(X) .  The results are 
98.26%, 99.82% and 99.90%, which are extremely 
close to the values in Table 3 (98.26%, 99.82% and 
99.89%).  Hence, we can see that the DKG 
surrogate models are very accurate. 
 

5.2. Practical Demonstration of 
Confidence Level 

In confidence-based reliability method, we have 
to ask a question whether the estimated reliability 
truly satisfies target confidence level.  It is not easy 
to theoretically prove that the confidence-based 
reliability is conservative.  In this section, the 
confidence level is numerically demonstrated by 
repeating 100 times of confidence-based reliability 
assessment with different sets of input/output test 
data.  100 sets of ten input test data and five output 
test data are randomly drawn from true input and 
physical output distributions, respectively.  These 
100 repeated tests have been carried out on the HPC 
system—Excalibur (60 nodes in parallel; each node 
has 32 cores and 128 GB memory)—at the U.S. 
Army Research Laboratory.  One confidence-based 
reliability assessment takes approximately 3 hours 
using 540 cores and 128 GB memory.  For these 
100 trials, a comparison study between two 
methods, the proposed confidence-based method 
and output best-fit method, has been carried out.  
Figures 6 and 7 illustrate the histograms of 
confidence-based reliability and output best-fit 
reliability for 100 trials, respectively.  Figures 6 and 
7 show how many trials conservatively estimate 
(less than) true reliability for both methods.  It can 
be seen that the confidence-based method satisfies 
target confidence level of 90% − 98% (for G1), 
100% (for G2) and 100% (for G3), whereas output 
best-fit method does not provide enough 
confidence − 51% (for G1), 42% (for G2) and 44% 
(for G3).  In addition, it can be noticed that the right-
tail of histogram for output best-fit method is 
heavier than one for the confidence-based method.  



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

UNCLASSIFIED: Distribution Statement A. Approved for public release. 
 
 

Page 9 of 10 

This implies that the proposed method can prevent 
gross overestimation of reliability. 

 

 
(a)  G1    (b)  G2 

 
(c)  G3 

 
Figure 6: Histogram of confidence-based reliability for 

100 trials 
 

  
(a)  G1    (b)  G2 

 
(c)  G3 

 
Figure 7: Histogram of output best-fit reliability for 100 

trials 
 

6. CONCLUSIONS 
In this study, we have developed a novel 

reliability assessment methodology which 
considers uncertainties due to limited number 
input/output test data and biased simulation model, 
which occur in many practical engineering 
applications.  To combine all uncertainties, 
hierarchical Bayesian analysis is carried out to 
obtain the uncertainty distribution (i.e., CCDF) of 
reliability that can provide confidence level of 
reliability.  Thus, the proposed confidence-based 
reliability method provides the reliability 
estimation at the target confidence level that 
engineers set.  It is numerically demonstrated that 
the proposed method satisfies target confidence 
level that true reliability is larger than the estimated 
reliability.  The proposed method can be applied to 
any engineering problem where practical 
experimental situation necessitates reliability 
assessment with confidence. 
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ACRONYMS 
AKDE Adaptive kernel density estimation 
CAE Computer-aided engineering 
CCDF Cumulative CDF 
CDF Cumulative distribution function 
DKG Dynamic Kriging 
DOE Design of experiment 
MCMC Markov Chain Monte Carlo 
MCS Monte Carlo simulation 
PDF Probability density function 
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